Improvements in Isometric Elbow Flexion Rate of Torque Development are Muscle Length Dependent Following 8 Weeks of Dumbbell Curls.

Rebecca Franklin¹, Zachariah Henderson¹, Shizhen Wang¹, Trisha Scribbans¹

¹Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada Email: frankl10@myumanitoba.ca

Summary

Rate of torque development (RTD) is a crucial component of muscle performance, which may be influenced by muscular adaptations from resistance training (RT). Twenty untrained participants performed 2-4 sets of dumbbell curls at 70% of their estimated 1-repetition maximum three times weekly for 8-weeks. RTD at 5, 10 and 200 milliseconds (ms) was measured using isokinetic dynamometry PRE and POST 8-weeks of RT. Five repetitions were completed at 60, 90 and 120° of elbow flexion. Results revealed greater RTD improvements at 90° than 60° of elbow flexion.

Introduction

The rate of torque development (RTD), the speed that force is produced by a muscle, is a critical aspect of muscle performance. Due to changes in muscle architecture when muscles are stretched or shortened, force production varies at different muscle lengths [1]; however, RTD can be improved with resistance training (RT) [2], and may be influenced by neural and morphological adaptations from RT [3]. Indeed, greater muscle mass is generally associated with greater force generation, and recent work suggests that muscle hypertrophy and motor unit recruitment may differ across regions of a muscle depending on the RT stimulus [4]. Given that RT may affect muscle architecture, and the contractile structures of a muscle are heterogenous, it seems plausible that improvements in RTD with RT may also occur in a heterogenous fashion with respect to muscle length. As such, we examined the change in RTD at short (120°), medium (90°), and long (60°) muscle contraction lengths following 8weeks of isotonic unilateral RT of the elbow flexors.

Methods

Twenty untrained participants (n=20, 12 females, 8 males; 24±4 years old, height: 172.6±11.3 cm, weight 73.3±18.1 kg) completed 2-4 sets of unilateral dumbbell curls at 70% of their estimated 1-repetition maximum 3 times weekly for 8-weeks.

Isokinetic dynamometry (Biodex Medical Systems) measured isometric RTD of the elbow flexors PRE and POST 8-weeks of RT. Five repetitions were completed at 60° , 90° and 120° of elbow flexion. The onset of RTD was determined as the last trough before torque rises above baseline noise [5] and calculated as the change in force/time for 5 ms, 100 ms, and 200 ms. Three, 2*3 repeated measures ANOVAs were conducted to assess the effects of time (PRE and POST) and muscle length (60, 90 and 120° of elbow flexion) on RTD at three durations (0-5, 0-100 and 0-200 ms). To maintain adequate statistical power, a compromise power was conducted, resulting in alpha being set at ≤ 0.2 and Bonferroni corrected for post-hoc comparisons ($p \leq 0.067$).

Results and Discussion

There were no interactions across time or position at 0-5, 0-100 or 0-200 ms. While 0-100 ms had a main effect of position, Bonferroni post hoc tests revealed no significance. There was a main effect of time (p=0.101) and position (p=0.092) on 0-200 ms (Table 1). Post-hoc tests revealed RTD at 0-200 ms at 90° was greater than 60° (p=0.015). Consistent with previous reports, RT increased RTD at 0-200ms suggesting that peak torque was increased with RT [2,6]. Given that the RT was not performed with very high velocities, it is not surprising that changes in early RTD (0-100 ms) were not observed. As an increase in later RTD (0-200 ms) was only present at 90°, this suggests that improvements in RTD following isotonic elbow flexor RT are muscle contraction-length dependent.

Table 1: Rate of torque development before (PRE) and after (POST) training at 60 °, 90 ° and 120° of elbow flexion at 5, 100 and 200 milliseconds (ms). Data represented as mean (standard deviation). * Significantly different than 60 °.

	0-5 ms		0-100 ms		0-200 ms		
	PRE	POST	PRE	POST	PRE	POST	
60°	56.7	67.1	80.9	105	84.6	104	
	(148)	(137)	(132)	(149)	(81.1)	(91.3)	
90°	69.9	77.2	110	130	103	122	
	(125)	(121)	(133)	(167)	(82.2)	(102)*	
120°	60.8	80	112	118	103	113	
	(108)	(127)	(117)	(145)	(80.9)	(91.7)	

Conclusions

8-weeks of elbow flexor RT does not improve early (0-100 ms) isometric RTD but improves later RTD (0-200 ms), with the 90° elbow flexion position producing greater improvements than the 60 and 90° elbow position, suggesting that improvements in RTD following isotonic elbow flexor RT are muscle contraction-length dependent.

References

- [1] De Ruiter CJ. et al. (2004). *J. Appl. Physiol*, **97(5)**: 1693-1701.
- [2] Jenkins NDM. Et al. (2016). *J Musculoskelet Neuronal Interact.* **16(2):** 135-144.
- [3] Andersen LL. et al. (2010) Scand J Med Sci Sports, 20(1).
- [4] Wakahara T. et al. (2013). *Med Sci Sports Exerc.* **45:** 2158–2165.
- [5] Maffiuletti, NA. et al (2016). Eur J Appl Physiol, **116**: 1091–111.
- [6] Jenkins NDM. Et al. (2014). *Int J Sports Med.* **35(14)**: 1190-5.