Torque-length relationship of vastus lateralis fascicles: effect of velocity and pre-activation on optimal length

T. Tallio¹, A. Nordez¹, L. Lecarpentier¹, S. Dorel¹

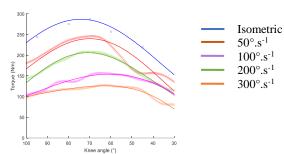
1. Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France Email: sylvain.dorel@univ-nantes.fr

Summary

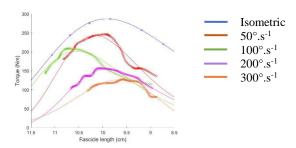
This study aimed to investigate the effect of joint velocity $(50^{\circ}.s^{-1}$ to $450^{\circ}.s^{-1})$ and of pre-activation (eccentric or isometric contractions prior concentric) on the torque-length relationship on the vastus lateralis muscle. Fascicle length was measured with dual probe ultrasound. Models nicely fitted the torque-angle and the torque-length relationships (R^2 of 0.91 ± 0.08) for each joint velocity except for $450^{\circ}.s^{-1}$. We also obtained good fitting of these relationships with preactivation at $100^{\circ}.s^{-1}$ (R^2 of 0.90 ± 0.17) but not at $300^{\circ}.s^{-1}$. We found no difference of optimal angle nor optimal fascicle length with increased joint velocity. No effect of preactivation was reported, despite a decrease of maximal torque in isometric pre-contraction. These results suggest a dynamic interaction between muscle and tendon to keep the same optimal fascicle length.

Introduction

Torque-angle relationship is widely used in research as a proxy of the muscle force-length relationship. This measure is commonly realised in isometric contractions on a single joint at various angles, and compared to multi-joint dynamic tasks [1]. Some studies have demonstrated a shift of the optimal angle when joint velocity increased [2], but none of them, to our knowledge, have investigated if this shift of optimal angle was caused by a shift of the optimal fascicle length. Moreover, a recent study aimed to describe the effect of pre-activation on torque production and fascicle behavior [3], but it did not explore its effect on torque-length relationship. Therefore, this study investigates the effect of velocity and pre-activation on torque-length relationship.


Methods

21 physically active participants (14 males and 7 females) performed maximal isometric voluntary contractions at six knee angles ranging from 45° to 110° (0° full knee extension) and isokinetic contractions at five velocities ranging from 50°.s-1 to 450°.s-1). Participants were also asked to do eccentric and isometric maximal contractions prior to the isokinetic ones at 100°.s-1 and 300°.s-1. Fascicle length of the vastus lateralis muscle was measured with ultrasound using a dual probe customized apparatus. We then modelized torqueangle and torque-length relationships in each condition [4]. After normality check, a one-way ANOVA with repeated measure was used to compare maximal torque, optimal angle and optimal length across all conditions.


Results and Discussion

Data presented here is for 8 participants, the remaining are still in processing. We fitted with great accuracy the torqueangle (Figure 1) and the torque-length (Figure 2) relationships (R² of 0.91 \pm 0.08), for every joint velocity except $450^{\circ}.s^{-1}$. This result could be due to the difficulty of participants to reach this velocity on the ergometer, related to

both muscle activation and mechanical braking on the ergometer.

Figure 1: Example of the Torque-Angle relationships modelized in isometric and isokinetic conditions on one participant. Cross bars represent experimental data and line the modelized data.

Figure 2: Example of the Torque-Length relationships modelized in isometric and isokinetic conditions on one participant. Cross bars represent experimental data and line the modelized data.

For the joint velocities modelized, ANOVA revealed a significant effect of joint velocity on maximal torque (p<0.001), as it decreased with the increased velocity. However, we found no effect of velocity on optimal angle despite a low tendency (p=0.125) to change. Statistical analysis also demonstrated no effect of joint velocity on optimal length (p=0.84), suggesting that it does not affect fascicle length to produce force. For pre-activation, we found a decrease of maximal torque with isometric pre-activation (-13.7% from isokinetic; p<0.01) but no differences of optimal angle (p=0.238) nor optimal length (p=0.975), suggesting different muscle-tendon interactions.

Conclusions

In conclusion, we demonstrated that an increase of joint velocity was associated with modifications of maximal torque but not with changes of the optimal angle and fascicle length. Pre-activation did not induce alterations of optimal angles nor fascicle lengths. Further analysis will give us a deeper comprehension of muscle-tendon interactions involved in isokinetic testing.

References

- [1] Nikolaidou et al. 2017. R. Soc. open sci. 4: 170185.
- [2] Anderson et al. 2007. J Biomech. 40(14): 3105–3113.
- [3] Goecking et al. 2024. J Appl Physiol. 137: 394–408.
- [4] Hoffman et al. 2012. J Appl Physiol. 113: 90-96.