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Summary

During locomotion in complex settings humans integrate
information about the environment and body states to
dynamically select foot placements. Despite this, existing
data-driven models of foot placement control assume
single-input and fixed-timescale linear control. We introduce
a deep learning-based data-driven framework to identify the
influence of multiple input modalities on foot placement
control across timescales in different kinds of uneven terrain.

Introduction

Human locomotion in the real world uses multi-sensory
feedback — proprioceptive, vestibular, and visual — to
estimate environmental and body states to guide dynamic
foot placement. Existing data-driven models are limited
to treadmill walking with linear assumptions [1] that may
not generalize to multi-modal and context-dependent control
inherent in the real world. To address this, we develop a deep
learning framework to analyze large-scale locomotion data
in uneven terrain running [2] and uneven terran overground
walking [3]. By comparing the predictive power of different
input modalities on future foot placement to a baseline model,
our framework eliminates significant inter-trial variability,
revealing input modality-dependent control.

Methods

Figure 1: Overview of the modeling framework. A Hypothesized
input modalities and foot placement output. B Network architecture
of the controller.

We hypothesize that foot placement control depends on
the history of body and environmental states. To test
this, our deep learning framework is trained on input
modalities including kinematics of the CoM-relevant states,
swing-foot states, full-body states, and gaze fixations (Figure
1A), to predict future foot placement. These inputs are
integrated over different windows to identify the amount
of history needed for prediction at each gait phase. We
incorporate a trial ID embedding in our deep learning
framework to separately learn the trial-specific components
of the foot placement, reducing inter-trial variability in
prediction (Figure 1B). Given the high correlation between
modality-based and baseline prediction intercepts across

trials (Figure 2B), we analyze the relative predictive power
as shown in Figure 2A, further reducing inter-trial variability.

Results and Discussion

Figure 2: Relative predictive power. A R2 across gait phase
for modality-based and baseline predictions. The intercept is the
R2 at gait phase 0. The red shaded area represents the relative
predictive power (∆R2). B Correlation between baseline and
CoM-relevant kinematics intercepts. C ∆R2 of CoM-relevant,
full-body kinematics and gaze fixations for lateral foot placement
prediction during overground rough terrain walking. The vertical
lines indicate the control timescale of each input modality when its
predictive power outperforms the baseline model by 5%. The gray
shaded region represents swing phase.

The relative predictive power reveals distinct control
timescales across modalities. During overground walking on
rough terrain, we observe that lateral foot placements are
visually guided, with gaze fixations contributing earlier to
prediction than both CoM-relevant and full-body kinematics
(Figure 2C), possibly to inform path planning to navigate
around terrain obstacles. This result quantifies the
extent to which, in challenging environments, individuals
rely on vision to plan foot placement before relying
on postural body state information. Our finding that
full-body kinematics predict future foot placement before
CoM-relevant kinematics could reflect the role of whole-body
angular momentum in foot placement control.

Conclusions

We put forth a data-driven deep learning framework to make
trial-specific foot placement predictions, revealing input
modality-dependent control timescales during locomotion in
the real world.
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