Realistic Prediction of Human Arm Movements in Daily Activities Using Nonlinear Model Predictive Control
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Summary

Optimal control and predictive simulations have provided
valuable insights into human arm reaching movements.
However, few studies have explored realistic 3D arm
models, primarily focusing on point-to-point reaching. In
this study, we investigate voluntary human movements
in realistic, three-dimensional tasks, such as drinking,
to better understand motor control in activities of daily
living. We employ a model predictive controller (MPC)
that incorporates feedback, enabling the emergence of
naturalistic arm trajectories. ~ Our approach allows for
real-time adaptation to dynamic environments, capturing the
complexity of musculoskeletal dynamics. We demonstrate
that with our approach we can accurately reproduce activities
of daily living in good agreement with recorded experimental
data from healthy participants. In the future, this approach
will be integrated with wearable sensors to predict motor
intention for assistive devices. We hypothesize that this will
facilitate the development of human-machine interfaces with
more intuitive and natural control.

Methods

A Musculoskeletal Model

A 3D-musculoskeletal arm model is used based on a
previously published arm model and adapted to the MuJoCo
physics engine [1, 2]. It consists of 7 Degrees of
Freedom (DoFs) and is actuated by 24 muscles, modelled
as Hill-type muscles with a rigid tendon. It is initialized to
a relaxed resting position, with the elbow joint set to 90°,
corresponding to a starting position on a table, for example
reaching for a glass of water. The simulation time is set to
1.5 s, equivalent to the experimental data.

B Control

A trajectory optimization problem is set up, to generate
muscle stimulation commands u. This problem is solved
repeatedly in a receding-horizon fashion, with varying
prediction horizons and recursively apply on the first element
of the predicted optimal control sequence. Each control
step, the optimization problem is warm-started by relying
on previous best policies. The predicted trajectory of
the arm model evolves solely from the dynamics of the
musculoskeletal arm model. We state the optimization
problem for the cost function J and state x as follows:

N
minJ = min Yy i(x(k), u(k), k),

k=0
subjectto z(k+ 1) = f(z(k), u(k), k),
u(k) = 7 (£(0), .., (k). M)

C Experimental Data

We used a previously published dataset, that recorded upper
limb movements of 20 healthy individuals performing diverse
activities of daily living such as drinking or eating [3]. We
compared the recorded optimal marker positions and inertial
measurement units to the simulated marker positions and
accelerations in the model.

Results and Discussion

We investigate the influence of model predictive control
(MPC) parameters on healthy arm-reaching movements,
particularly the effects of prediction horizon length and
different optimality principles. Our findings reveal three key
effects. First, increasing the prediction horizon from 0.3 to
0.6 s results in more cautious and slower movements—even
with the same movement end time—as the model better
anticipates future states and distributes effort more evenly,
rather th1an accelerating toward th% target.
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Figure 1: Simulated cost and wrist position for a simple reaching
task, while varying the prediction horizon length

Second, while simple cost functions suffice for
point-to-point reaching in the transverse plane, more complex
3D lifting movements, such as drinking or bringing a glass
to the mouth, require additional cost terms. Specifically,
incorporating energy efficiency penalties prevents excessive
elbow elevation (see Fig 2b, blue compared to red curve).
Finally, our model predictive control approach successfully
predicts reaching movements in strong agreement with
experimental data (see Fig. 2, blue compared to black

curves).
0.1
0.3
£ ° E 02
3, g 01
0
-0.2 -0.1
0 0.5 1 15 0 0.5 1 15
time [s] time [s]

(a) elbow position, up  (b) elbow position, out
0.3 04
E 02 g03
ERR 502

—Simw EN
—Sim w/o EN
—Exp

0.1 0

0 0.5 1 1.5 0 05 1 15
time [s] time [s]

(c) wrist position, up  (d) wrist position, out
Figure 2: Simulated and experimental marker data for the drinking
task (wrist and elbow marker, for the simulation 5 repeated runs are

shown)
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