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Summary

Generating 3D-reaching movements while accounting for
muscle dynamics nonlinearities and model redundancy
has been a significant challenge. While reinforcement
learning combined with the minimum variability principle
has tackled this issue for fast movements, it is not well-suited
for rehabilitation applications involving impaired patients,
who typically exhibit moderate-to-slow movements. To
address this limitation, we introduce an energy consumption
penalty into the reward function and employ a synergetic
action representation to reduce the control dimensionality.
Our findings indicate that incentivizing energy-efficient
movements reduces peak velocity to three-fourths of the
maximum velocity, and that a purely synergetic controller
can generate precise and stable movements. We expect that
these insights will contribute to more accurate models for
predicting movement dynamics in impaired individuals.

Introduction

The biomechanics of the human arm allows for an
infinite number of movement solutions to reach a
given target position. Despite this redundancy, human
movements exhibit stereotypical characteristics, such as
bell-shaped velocity profiles. Most simulation studies
investigating such goal-oriented movements typically resort
to simplified conditions by approximating muscle dynamics
to torque-driven models or restricting movements to a
planar workspace [1, 2]. Ikkala et al. have employed a
3D musculoskeletal arm model in conjunction with the
minimum variance principle [3]. The resulting control
policy generates 3D reaching movements that replicate the
stereotypical bell-shaped velocity profile [3]. However,
despite the symmetric velocity profiles, the observed
maximum velocities are significantly higher than those
typically reached in daily life. This is primarily because the
control policy was designed to minimize movement time
given a position tolerance. To address this, our approach
incorporates an energy consumption penalty to regulate
maximum velocity. Additionally, we consider a purely
synergetic action representation to simplify the control
task while preserving the dynamics of the musculoskeletal
system.

Methods

We use MuJoCo physics engine to simulate the muscle
dynamics and the musculoskeletal human arm model
developed by MyoSuite [4]. Wrist and fingers were
fixed, resulting in a model with 24 muscle actuators and
16 joints. To identify muscle synergies, we generated
movements across the entire kinematic workspace by a
self-organization control method (DEP [5]), then computed
10 muscle synergies, representing 90% of variability in the
recorded muscle activation data. We learned a control policy
with reinforcement learning (SAC) and multiplied the output
by the synergy matrix [6]. We add signal-dependent noise to
the resulting control signals which are send to the muscles
with a control frequency of 10 ms. The reaching task is

considered successful if the hand remains within the position
tolerance for 200 ms.

The reward function is r = rreaching + αpenaltyroptimal.
The first term rewards fast reaching of the goal, the second
term penalizes squared muscle activation to encourage
optimal movement. αpenalty increases the priority of
energy-efficient movements and is independent factor we
investigate in this study.

Results and Discussion

Slower movements can be achieved by our approach.
Progressively increasing αpenalty leads to longer movement
times and lower peak velocities (See Figure 1). However,
the effect of the penalty coefficient on peak velocity
reduction saturates around αpenalty > 600 (≈ 0.25Vmax).
Further increasing the penalty coefficient causes training
instabilities. Also interesting to note is that the purely
synergetic controller successfully generated precise and
stable reaching movements in fast and slow movements,
thereby benefiting from substantially reduced training time
(3h vs 30h) compared to directly controlling all 24 muscles,
confirming previous observations [6].

Figure 1: Effect of penalty coefficient (αpenalty) on velocity
profiles and movement time. Five targets were used with 100
rollouts considered for each penalty coefficient.

Conclusions

Our reward function implements a trade-off between fast
movements, incentivized by penalizing movement time, and
slow movement, incentivized by energy efficiency. However,
this strategy encountered a limitation in further reducing
maximum velocity. This may be because, after increasing the
penalty coefficient beyond a certain point, the two penalties
become equivalent, preventing the agent from increasing
movement time without expending additional energy to
maintain posture

References

[1] Fisher, F. (2021). Scientific Report, 11: 14445.
[2] Ueyama, Y. (2021). Scientific Report, 11: 18564.
[3] Ikkala, A. et al (2022). ACM, 35: No.90, pp. 1-14.
[4] Caggiano V. et al. (2022). PMLR, 168: 492-507.
[5] Der R. et al. (2015). PNAS, 112(45): E6224-E6232.
[6] Berg C. et al. (2023). Auton Robot, 48: 28.

jhon.charaja-casas@uni-tuebingen.de

