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Summary 

An automated method to personalize muscle origin, insertion 

and via points from Magnetic Resonance Images was 

developed using an nnU-Net model. The model shows high 

accuracy, with Euclidean Errors between predicted and 

annotated muscle points that are similar  to inter- and intra-

rater variability. Future research will focus on the effect of 

these errors in muscle points on muscle moment arm lengths 

and estimated muscle and joint forces during movement. 

Introduction 

Estimations of muscle and joint forces in a biomechanical 

model are sensitive to individual variation in muscle-tendon 

paths [1]. However, personalizing muscle-tendon paths is 

time-consuming and requires expert knowledge. Therefore, 

this study automatically determined personalized muscle 

points from lower limb Magnetic Resonance (MR) scans 

using an nnU-Net model [2], and the accuracy of predicted 

points was evaluated against expert annotation. 

Methods 

MR scans of 12 bilateral lower limbs (from pelvis to feet) of 

healthy controls (n = 7) and hip osteoarthritic patients (n = 5) 

[1, 3, 4] were used to train 3D nnU-net models [2]. The MR 

scans were cropped to remove empty slices and resampled to 

the voxel size of the pelvis scan (0.93mm x 1.00mm x 0.93mm 

or 0.88mm x 1.00mm x 0.88mm). Next, the scans from pelvis, 

thigh, knee, and feet region were merged into one image and 

split into left and right. Intensities of the thigh scan of one 

control case were rescaled to the maximum value found in the 

other scans of this participant before preprocessing, because 

the distribution of intensities far exceeded the other scans. 

Since nnU-Net is a segmentation model and point prediction 

is desired, cubes of 35 voxels were defined around the muscle 

points (figure 1) [5]. A subset of 18 relevant muscles during 

gait (with 61 muscle points) was selected. These points were 

divided over seven datasets, and thereby models, to avoid 

label overlap. A custom randomized 80-20 train-test split was 

implemented and  the 3D nnU-Net model was trained for 500 

epochs for each dataset (NVIDIA A100 Tensor Core GPU, 80 

GB of VRAM). After inference, the centroid of the 

segmentation was calculated, to obtain a point. One case of 

the test set was excluded from further analysis due to poor 

image quality. 

 
Figure 1: Example of predictions (pred) and ground truths (gt) on an 

axial slice for a sample of the test set. 

The model was validated by comparing the results of the test 

set against the ground truth of the annotations provided by an 

experienced muscle point annotator. Additionally, for an 

independent dataset of one left leg, the predicted muscle 

points were also compared to the ground truth. The Euclidean 

Error (EE) and the absolute distance error along each 

anatomical axis were calculated.  

Results and Discussion 

The median and interquartile range EE for the test set (table 

1) was slightly smaller compared to the inter- and intra-rater 

operator variability of attachment points reported in previous 

research (5.6 (10.7) and 6.9 (7.7) mm, respectively [6]). The 

EE for the independent sample was slightly higher, i.e., 6.8 

(5.8) mm, but remains similar to the intra-rater variability. 

Assuming the operator variability would be the same for the 

dataset in this paper, this suggests that the 3D point model is 

similar to human expertise. The median EE difference 

between via and attachment points is small in both 

configurations (table 1). However, in two instances, via points 

were not predicted (via points of the tensor fasciae latae and 

vastus lateralis). 

Table 1: Median (interquartile range) of model errors (in mm) for 

the attachment (att.), via, and over all muscle points (overall) in the 

test set. Euclidean error (EE) as well as errors in the three anatomical 

axes are reported. AP: anterior-posterior, SI: superior-inferior, ML: 

medial-lateral. 

 EE ML AP SI 

att. (38) 4.9 (3.8) 1.9 (2.0) 2.8 (2.8) 2.1 (3.7) 

via (23) 5.1 (4.3) 1.9 (2.0) 2.8 (2.8) 2.1 (4.4) 

overall 

(61) 

5.1 (4.3) 1.9 (2.0) 2.8 (2.8) 2.1 (4.4) 

Conclusions 

The muscle point model shows high accuracy, similar to 

previously reported inter- and intra-operator variability of 

attachment points annotation. The cube-segmentation 

approach used is accessible and requires limited deep learning 

expertise. With more and coherent data, this approach could 

attain higher accuracy. Future research will focus on the effect 

of reported differences in muscle points on muscle moment 

arm lengths and estimated muscle and joint forces during 

movement. 
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