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Summary 
Significant breakthroughs in machine learning-based 
markerless motion capture research have allowed for 
improved accuracy in pose estimation from monocular video. 
Many of these methods use kinematic joint structures with 
extra non-anatomical degrees of freedom (DOFs). This study 
introduces a novel kinematic engine and model built from 
Pytorch-compatible data structures to facilitate future 
machine learning-based pose estimation algorithms [1]. 

Introduction 
Pose estimation from monocular video utilizing markerless 
motion capture facilitates the movement analysis of human 
subjects without the need for direct calibration or advanced 
hardware technology. Typically, during the training of 
machine learning models for monocular markerless motion 
capture, subjects are represented by values describing their 
pose and body shape. The most commonly used kinematic 
model, SMPL, describes each joint with three DOFs [2]. As a 
result, non-anatomical poses may occur during both model 
training and model inference. This study introduces a novel 
automatically differentiable kinematic engine and model built 
from Pytorch-compatible data structures to facilitate future 
machine learning-based pose estimation algorithms. 

Methods 
Python code was developed utilizing the Pytorch library to 
build an engine for creating kinematic models containing 
bodies, joints, and markers. Each joint is defined by twelve 
parameters describing the transformations of the parent and 
child bodies. Each body is defined as having a single joint 
connecting to a parent body. The root body can be defined as 
having either zero or six DOFs. Markers are defined by their 
position in the reference frame of their attached. Models 
include a full-body scale factor and individual body segment 
scale factors to allow for subject-specific modeling. 
Forward and inverse kinematic methods were also developed. 
Input marker and pose data and all intermediate calculations 
are computed using tensors containing time-varying data, 
allowing all time states to be solved simultaneously. The 
inverse kinematics method minimizes squared distance errors 
between experimental and modeled markers. It uses the 
Pytorch LBFGS function to optimize pose, full-body scaling, 

individual segment body scaling, and marker positions using 
Pytorch’s built-in automatic differentiation. 
The kinematic engine was used to perform inverse kinematics 
on a lower body model with a six DOF root body and six 
DOFs per leg (three hip, one knee, two ankle). Marker motion 
data of a walking motion from the CMU Graphics Lab Motion 
Capture Database was selected [3]. Pelvis markers were 
allowed to move in the X and Z axes and the full body scale 
factor and individual body scale factors were allowed to 
change during the optimization. The resulting kinematics 
were compared to a matched kinematic model in CuSToM 
with similar marker motion and body scaling functionality [4]. 
Forward kinematics was then performed to determine the 
marker distance errors between the experimental marker data 
and the inverse kinematics-derived motion. 

Results and Discussion 
The novel Pytorch-based kinematic engine showed high 
kinematic accuracy relative to CuSToM for all lower body 
coordinates except for the left ankle varus/valgus angle. After 
performing forward kinematics, the Pytorch-based kinematic 
engine’s marker distance errors relative to the experimental 
marker data were 7.4mm while CuSToM’s marker distance 
errors were 9.1mm.  
The kinematic disparity may be due to differences in 
optimization methods between the two kinematic engines. 
CuSToM optimizes marker positions and individual segment 
body scale factors prior to inverse kinematics while the 
method presented here optimizes these components during 
inverse kinematics. Notably, the Pytorch-based kinematic 
engine showed lower marker distance error than CuSToM. 

Conclusions 
A novel kinematic engine utilizing Pytorch’s tensor data 
structure and native automatic differentiation was developed 
and showed similar accuracy to existing kinematic engines.  
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Table 1: Average lower body kinematic errors by coordinate between the novel Pytorch-based kinematic engine and CuSToM.  

 Hip Flexion Hip Adduction Hip Rotation Knee Flexion Ankle Varus/Valgus Ankle Flexion 

Left (Degrees) 3.3 2.2 1.0 2.8 9.3 1.1 

Right (Degrees) 3.0 2.5 0.6 2.4 3.9 0.5 


