
Development of a Pytorch-based Kinematic Engine to Facilitate the Use of Realistic Joint Structures in Machine Learning
Applications

Claire V. Hammond1, Wan M. R. Rusli1, Ryo Ueno1

1Department of Research and Development, ORGO Inc., Sapporo, Japan
Email: cvhammond@orgo.co.jp

Summary
Significant breakthroughs in machine learning-based
markerless motion capture research have allowed for
improved accuracy in pose estimation from monocular video.
Many of these methods use kinematic joint structures with
extra non-anatomical degrees of freedom (DOFs). This study
introduces a novel kinematic engine and model built from
Pytorch-compatible data structures to facilitate future
machine learning-based pose estimation algorithms [1].

Introduction
Pose estimation from monocular video utilizing markerless
motion capture facilitates the movement analysis of human
subjects without the need for direct calibration or advanced
hardware technology. Typically, during the training of
machine learning models for monocular markerless motion
capture, subjects are represented by values describing their
pose and body shape. The most commonly used kinematic
model, SMPL, describes each joint with three DOFs [2]. As a
result, non-anatomical poses may occur during both model
training and model inference. This study introduces a novel
automatically differentiable kinematic engine and model built
from Pytorch-compatible data structures to facilitate future
machine learning-based pose estimation algorithms.

Methods
Python code was developed utilizing the Pytorch library to
build an engine for creating kinematic models containing
bodies, joints, and markers. Each joint is defined by twelve
parameters describing the transformations of the parent and
child bodies. Each body is defined as having a single joint
connecting to a parent body. The root body can be defined as
having either zero or six DOFs. Markers are defined by their
position in the reference frame of their attached. Models
include a full-body scale factor and individual body segment
scale factors to allow for subject-specific modeling.
Forward and inverse kinematic methods were also developed.
Input marker and pose data and all intermediate calculations
are computed using tensors containing time-varying data,
allowing all time states to be solved simultaneously. The
inverse kinematics method minimizes squared distance errors
between experimental and modeled markers. It uses the
Pytorch LBFGS function to optimize pose, full-body scaling,

individual segment body scaling, and marker positions using
Pytorch’s built-in automatic differentiation.
The kinematic engine was used to perform inverse kinematics
on a lower body model with a six DOF root body and six
DOFs per leg (three hip, one knee, two ankle). Marker motion
data of a walking motion from the CMU Graphics Lab Motion
Capture Database was selected [3]. Pelvis markers were
allowed to move in the X and Z axes and the full body scale
factor and individual body scale factors were allowed to
change during the optimization. The resulting kinematics
were compared to a matched kinematic model in CuSToM
with similar marker motion and body scaling functionality [4].
Forward kinematics was then performed to determine the
marker distance errors between the experimental marker data
and the inverse kinematics-derived motion.

Results and Discussion
The novel Pytorch-based kinematic engine showed high
kinematic accuracy relative to CuSToM for all lower body
coordinates except for the left ankle varus/valgus angle. After
performing forward kinematics, the Pytorch-based kinematic
engine’s marker distance errors relative to the experimental
marker data were 7.4mm while CuSToM’s marker distance
errors were 9.1mm.
The kinematic disparity may be due to differences in
optimization methods between the two kinematic engines.
CuSToM optimizes marker positions and individual segment
body scale factors prior to inverse kinematics while the
method presented here optimizes these components during
inverse kinematics. Notably, the Pytorch-based kinematic
engine showed lower marker distance error than CuSToM.

Conclusions
A novel kinematic engine utilizing Pytorch’s tensor data
structure and native automatic differentiation was developed
and showed similar accuracy to existing kinematic engines.

References
[1] Paszke, A et al. (2019). Adv. NIPS, 8024-35.
[2] Loper, M et al. (2015). ACM Trans. Graph, 248: 1-16.
[3] CMU Motion Database. http://mocap.cs.cmu.edu/.
[4] Muller, A et al. (2019). JOSS.

Table 1: Average lower body kinematic errors by coordinate between the novel Pytorch-based kinematic engine and CuSToM.

 Hip Flexion Hip Adduction Hip Rotation Knee Flexion Ankle Varus/Valgus Ankle Flexion

Left (Degrees) 3.3 2.2 1.0 2.8 9.3 1.1

Right (Degrees) 3.0 2.5 0.6 2.4 3.9 0.5

