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Summary 

This study proposes an automated framework that can analyze 
the biomechanics of professional tennis players from internet 
videos. We employ monocular computer vision (CV)-based 
pose estimation to investigate biomechanical differences in 
the tennis serves of a higher-performance player (Player A: 
78% first-serve points won) and a lower-performance player 
(Player B: 56% first-serve points won). Using broadcast 
footage, 123 serve sequences were extracted and enriched with 
outcome metadata [2]. Joint angles were calculated through 
pose estimation, revealing that Player A’s serves 
demonstrated lower joint angle variability and greater 
consistency in timing. These findings underscore the potential 
of monocular CV-based pose estimation for conducting 
detailed biomechanical analyses, enabling broader 
applications in sports performance research and optimization. 

Introduction 

Understanding the biomechanical differences between high- 
and lower-ranked tennis servers can provide valuable insights 
into performance optimization. Traditional motion capture 
systems are often impractical for large-scale analysis, 
necessitating markerless approaches. This study leverages 
broadcast video and pose estimation to analyze tennis serves. 

Methods 

Broadcast footage from a grand slam match was analyzed, 
focusing on players’ serves. Pose estimation was conducted 
using MMpose and MotionBERT [1], resulting in 123 serves 
tracked (Player A: 69 serves). Metadata, including serve speed 
and placement, was integrated from publicly available 
databases [2]. Joint angles were derived from 3D pose data to 
provide biomechanical context. To standardize serve 
sequence comparisons, dynamic time warping (DTW) [3] was 
used to align temporal variations in the serve motion. 

Results and Discussion 
Player A exhibited significantly lower variability in joint 
angles compared to Player B, particularly in the shoulder 
(Figure 1). The consistent timing observed in Player A’s 
shoulder movement throughout the serve sequence contributed 
to a more repeatable motion pattern, which was also evident 
across other joints. In contrast, Player B demonstrated 
irregular movement patterns, with substantial variability 
occurring predominantly during the mid-serve 

phase. This variability was associated with improper timing of 
the swing motion, where some sequences exhibited an early 
swing onset, while others displayed a delayed swing. 
 
A preliminary analysis found a moderate correlation between 
elbow joint velocity and serve speed. On second serves, Player 
A and Player B showed negative correlations of -0.50 and -0.41, 
respectively. For first serves, the correlations were weaker at 
0.25 and 0.18. The negative correlations on second serves 
suggest that reduced elbow angular velocity aids spin 
generation, prioritizing precision and consistency over speed. 

Figure 1: Player A shows a more consistent right shoulder angle 
throughout the serve sequence compared to Player B 

Conclusions 

This study demonstrates the feasibility of monocular 
computer vision for biomechanical analysis in tennis. Key 
differences in serve mechanics emerged between higher- and 
lower-performance players, with Player A showing greater 
consistency in joint angles and timing during critical phases. 
These findings highlight monocular pose estimation as a 
scalable, accessible tool for sports biomechanics. Future work 
will expand the sample size, analyze the kinetic chain, and 
validate results with ground truth data. 
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