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Summary 

This study presents a deep learning approach to computing 

upper limb kinematics using raw IMU data. Thirty-five 

participants performed upper-limb tasks with expert- and self-

placed sensor configurations. Generative adversarial networks 

were trained to convert IMU signals to joint angles. The 

findings showed that a single sensor on upper arm can 

generate the most accurate humeral angle predictions. Elbow 

angles were predicted with less than 10◦ of error using a 

forearm sensor alone or combined with one on the thorax or 

upper arm. This framework may be useful for sports, 

telemedicine and remote monitoring applications. 

Introduction 

Accurate assessment of upper extremity joint angles is 

important for evaluating performance of daily living 

activities, for example, in evaluating joint disease, treatment 

and in rehabilitation [1]. Most human movement assessments 

are conducted in laboratory environments; however, 

estimating joint angles in home settings could support 

clinicians in tailoring continuous and personalized treatment 

and rehabilitation plans. Previous studies have demonstrated 

the potential of Generative Adversarial Networks (GANs) for 

predicting lower limb angles using wearable sensors [2]. The 

objective of this study was to develop and validate deep 

learning models for predicting humerothoracic and elbow 

angles using IMUs, and to assess the effect of reduced number 

of sensors worn on kinematics accuracy. 

Methods 

Thirty-five healthy participants (15 female and 20 male, age: 

28±3 years) were recruited. First, participants performed full-

range shoulder flexion and abduction with straight arms, and 

elbow flexion-extension and pronation-supination motions. 

They then completed four daily tasks: reaching, head 

touching, waving, and throwing a ball. Three inertial 

measurement unit (IMU) sensors were placed on subjects’ 

thorax, upper arm and forearm. For the first set of tasks, which 

included planar shoulder and elbow motions, sensor 

placement was performed by a trained operator and then 

repeated under self-placed condition. In the second set, tasks 

were performed only under self-placed conditions. All tasks 

were performed at slow and fast speeds. Three-dimensional 

trajectories of retro-reflective markers attached to each 

subject’s upper limbs were simultaneously derived using a 12-

camera video motion capture system (Mocap). Two GAN 

models were trained on the planar shoulder and elbow motions 

data to convert IMU signals into humeral and elbow angles. 

Daily tasks served as a test set to compare GAN-predicted 

with motion-capture-measured angles. The models were 

trained and validated seven times using all possible 

combinations of the three sensors to assess the effect of sensor 

placement on prediction accuracy. 

Results and Discussion 

The GAN trained with the upper arm sensor generated the 

lowest humeral root mean square (RMS) errors, compared to 

MoCap-measured angles across all tasks, with 6.4◦ and 4.5◦ for 

the plane of elevation and elevation, respectively (Figure 1). 

The combination of thorax and upper arm sensors generated 

the lowest RMS for axial rotation at 8.6◦. Using all three 

sensors did not improve overall accuracy for either joint. No 

significant differences were observed between the predicted 

and measured maximum humeral angles in any degree of 

freedom (p>0.05). For the elbow, the combination of thorax 

and forearm sensors produced the lowest overall RMS error, 

with 7.0◦ for flexion and 9.9◦ for pronation. There were no 

significant differences in maximum elbow angles during ball 

throwing and waving between predicted and measured values 

(p>0.05).  However, maximum predicted elbow flexion was 

significantly higher than the measured angles during slow 

reaching (mean difference: 13.8◦, 95%CI: [4.6◦, 23.0◦], 

p=0.006). 

 

Figure 1: Average RMS errors of predicted humeral and elbow 

angles with different sensor combinations. 

Conclusions 

This study proposes a GAN framework to convert IMU 

signals into humeral and elbow angles. The results 

demonstrated that using one or two IMUs can produce reliable 

predictions, particularly for humeral angles. Employing two 

IMUs on the upper arm and forearm segments can further 

improve predictions for both humeral and elbow joints. Our 

findings were validated under self-placed sensor conditions 

across various tasks at two different speeds, highlighting the 

potential to adapt this approach to home settings and deliver a 

reliable real-time monitoring system for joint kinematics. 
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