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Summary 

This study introduces a remote mobility monitoring system 

that employs wearable technologies in the home environment. 

Ten participants performed 19 daily tasks while joint angles 

were calculated from IMUs (Inertial Measurement Units), and 

spatial location was tracked. A hybrid deep learning model 

classified tasks with 78.1% accuracy using a single IMU on 

the right forearm, and 86.9% accuracy with two IMUs placed 

on the left upper arm and right forearm. Additionally, three-

dimensional angles of five joints were predicted and validated 

during various upper- and lower-limb activities. 

Introduction 

Mobility and joint function significantly contribute to health 

and quality of life. Aging-related declines in mobility, along 

with altered joint kinematics, are linked to reduced quality of 

life, increased disability, and higher morbidity and mortality 

rates [1]. Wearable technologies offer a solution for 

monitoring daily activities in the home setting, enabling 

applications such as remote rehabilitation, fall prevention, and 

long-term disease management [2]. Current frameworks for 

remote monitoring of daily activities often fail to quantify 

joint angles and classify a broad range of movements 

accurately. The aim of this study was to develop a remote 

monitoring system for physical activity and joint mobility that 

utilizes a minimal number of wearable devices and is 

applicable to a wide range of daily tasks performed by adults 

in home environments. 

Methods 

Ten healthy subjects (6 female and 4 male, age: 27.7±1.8 

years) were recruited. Data collection was conducted inside a 

furnished apartment with five living areas: a kitchen, living 

room, study, bathroom and bedroom. Participants were 

instructed to perform 19 upper and lower limb tasks of daily 

living in random order, such as tooth brushing, hair combing, 

sit-to-stand and stand-to-sit, lying on a bed, and walking. 

Twelve IMUs were placed on body segments of each subject 

and joint angles were measured [3]. An ultra-wideband 

(UWB) system was used to track the real-time indoor spatial 

location of each participant as they moved within the home. A 

hybrid deep learning model combining Convolutional Neural 

Networks and Long Short-Term Memory networks was 

developed to classify the 19 activities using subject location 

data and data from all twelve IMUs as well as i) one, and ii) 

two IMUs. The optimal combinations of one and two sensors, 

and model hyperparameters, were derived using Bayesian 

optimization. A previously trained set of generative 

adversarial networks was employed to predict humerothoracic 

and elbow angles using sensors on the forearm, upper arm and 

thorax. The same process was repeated to generate hip, knee, 

and ankle angles using sensors on the sacrum, thigh, shank, 

and foot. 

Results and Discussion 

Using all twelve sensors, the 19 activities of daily living were 

classified with 96.9% accuracy. When combining spatial 

location data with a single IMU, the IMU placed on the right 

forearm achieved the highest classification accuracy (78.1%). 

When using two IMUs, the combination of the left upper arm 

and right forearm generated the highest task classification 

accuracy (86.9%) (Figure 1). The lowest root mean square 

error (RMSE) between the model predicted and measured 

humerothoracic angles across 11 upper limb tasks were 

achieved using the sensor on the right upper arm. These were 

11.6◦, 7.8◦, and 9.3◦ for plane of elevation, elevation, and axial 

rotation, respectively. For the elbow, the combination of 

forearm and thorax sensors produced the lowest RMSE 

(below 9.9◦ for flexion and pronation). Deploying two sensors 

on the thigh and shank resulted in RMSE values below 5.7◦ 

for hip and knee flexion and ankle dorsiflexion across six 

lower limb activities. When using a single sensor, the thigh 

sensor represented the lowest RMSE, with values below 9.2◦ 

in the sagittal plane, and less than 5.5◦ in frontal and transverse 

planes for all three lower limb joints. 

 

Figure 1: Best two-sensor combinations for classification of all 19 

tasks; R: right, L: left. 

Conclusions 

This study presented a deep neural network model for 

advanced mobility measurement in home settings.  The model 

classified 19 activities with 87% accuracy using spatial 

location data and just two IMUs. Upper- and lower-limb joint 

angles were estimated using one or two IMU sensors with 

close agreement with angles directly derived from IMUs. The 

predictions, however, were highly dependent on the number 

and placement of sensors. The forearm and thigh were the 

most beneficial segments for both task classification and angle 

measurement. The proposed framework offers a versatile 

solution for remote monitoring and rehabilitation systems.  
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