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Summary 
Humans show unparalleled ability when maneuvering 
diverse terrains. While reinforcement learning (RL) has 
shown great promise for musculoskeletal simulations, 
current approaches rely on motion data for policy training. 
Our combination of RL with a bio-inspired reward can learn 
robust locomotion controllers for 4 different musculoskeletal 
models and with up to 90 muscles by leveraging an adaptive 
reward function. This enables motor control and 
biomechanics communities to generate complex behaviors 
with RL, without relying on large amounts of motion data. 

Introduction 
Predictive simulations have reproduced human locomotion 
behavior in simple models, but high-dimensional 3D 
movement on uneven terrains has not been realized. In 
robotics, reinforcement learning (RL) methods can achieve 
highly stable (and efficient) locomotion, but the generation 
of human-like walking requires extensive use of motion 
capture data. A robust RL controller for high-dimensional 
musculoskeletal systems that can produce natural motion is 
still missing. 

Methods 
We use DEP-RL [1] a recent RL algorithm for 
musculoskeletal control known for its robustness and 
flexibility. RL training produces a controller aiming to 
maximize a numerical reward function. The starting point for 
our reward leverages results from previous studies [2], using 
a combination of task-, energy-, and torque-based costs 
aiming to induce behaviors that are close-to-natural motion: 
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It is, however, observed that this reward function cannot 
adequately reduce the used muscle effort, even after 
optimizing the weighting coefficients of the respective terms. 

We therefore propose to use an adaptive reward schedule that 
adapts only the effort coefficient during training, making our 
method more performant and easily applicable to different 
models. 

Results and Discussion 

The combination of a bio-inspired reward function, a 
performant RL agent and an adaptive effort term result in 
gaits that match experimental data, for musculoskeletal 
models of varying complexity, without the need to adjust the 
reward function or agent hyperparameters. 

We also observe that our controllers are more robust under 
unseen terrain variations than comparable reflex-based 
controller baselines [3] and are applicable to complex 
humanoid models with up to 90 muscles.  

 
Figure 1: This study uses a variety of different models of varying 
complexity: 2D and 3D movement, between 18 and 90 muscles, 
between 9 and 21 degrees-of-freedom and across two simulators.  

Conclusions 
Our approach to musculoskeletal control provides a solid 
foundation for the development of neuromechanical 
simulations with robust adaptive controllers for complex 
tasks and environments. 
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