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Summary 

We have developed models that can identify the presence of 
muscular dystrophy––a group of neuromuscular disorders 
characterized by progressive weakness and degeneration of 
skeletal muscles––using motion data extracted from video. 
Our current models obtain test accuracies of 94.0%––fully 
connected neural network trained on a set of clinically-
informed features––and 88.2%––transformer-based 
architecture trained on kinematic time series data.  

Introduction 

Measurements of human movement are critical for diagnosing 
and tracking neuromuscular disorders, yet current clinical 
practices lack sensitive tools to detect subtle weakness 
patterns early presentations of these disorders can cause. 
While researchers have developed methods to identify 
movement signatures linked to disease, these often rely on 
expensive technology or time-intensive tests that are not 
always feasible to conduct in a clinic [1]. OpenCap––a 
smartphone application that performs video-based, markerless 
motion capture––can help address this gap by enabling 
scalable, accessible, out-of-lab biomechanical data collection 
[2]. Our team has shown that a set of engineered features 
derived from OpenCap data can identify disease-specific 
movement characteristics that traditional timed functional 
tests (TFTs) cannot [3]. We are now developing models that 
perform the binary classification task of detecting muscular 
dystrophy.  

Methods 
We used OpenCap to collect marker positions and joint 
kinematics for 129 individuals performing nine different 
upper and lower extremity-based TFTs, including a 10-meter 
walk, a timed-up-and-go, and a five-time sit-to-stand. Our 
cohort contains 28 patients with facioscapulohumeral 
muscular dystrophy (FSHD), 58 patients with myotonic 
dystrophy (DM)––both subclasses of muscular dystrophy––
and 43 healthy controls. OpenCap automatically generates the 
time series of 3D joint positions and angles, which were 
sampled at 120 or 60 Hz depending on the task. We built two 
models to detect muscular dystrophy from video. In the first, 
we trained a neural network with three fully connected hidden 
layers on a set of 35 clinically informed, engineered features 
[3] that we extracted from each trial. In the second, we built a 
transformer-based model designed to run directly on the raw 
kinematic time series data. In both models, we applied an 
80:10:10 percentage split of the input dataset for training, 
validation, and test sets, respectively. We applied z-score 

normalization to the inputs, employed a class weights 
dictionary to account for class imbalances, and used a binary 
cross entropy loss function to train each model. 

Results and Discussion 
Both models are able to learn movement signatures associated 
with muscular dystrophy, and the transformer architecture 
does so from the raw kinematic data with minimal 
preprocessing required, which indicates potential for future 
uses of minimally preprocessed, video-based movement 
analysis as a diagnostic tool in neuromuscular populations. 
The fully connected neural network trained on the clinically 
informed features set achieves higher test accuracy and recall, 
and the transformer achieves slightly higher test precision 
(Table 1). Additionally, our transformer produces consistently 
higher precision than it does recall, indicating it is better at 
minimizing false positives than it is at ensuring no true 
positives are missed. This is consistent with the observed 
patterns in our dataset, as some of our muscular dystrophy 
patients have not yet progressed to having severe movement 
impairments, rendering their disease presence harder to 
detect.  
Table 1: Performance of different architecture and input 
combinations. The precision and recall values reported are weighted 
averages between the two classes (disease vs. no disease). 

 

Conclusions 

Deep learning architectures trained on video-derived data can 
differentiate between individuals with muscular dystrophy 
and healthy controls. Many patients with neuromuscular 
disorders endure a prolonged diagnostic odyssey; video-based 
disease detection, especially using minimally preprocessed 
kinematic time series, could help augment existing clinician-
graded assessments of function, remote monitoring, and 
diagnostic tools. Future work includes further hyperparameter 
tuning of our transformer model to improve test accuracy, 
adapting our models for multi-class neuromuscular disorder 
detection, and continuing to expand our input dataset to 
produce a larger, more diverse set of training examples.  

References 
[1] Jaspers et al. (2011). Gait & Posture, 34: 227-233. 
[2] Uhlrich SD et al. (2023). PLOS Comp. Bio, 19.  
[3] Ruth P et al. (2024). BioRxiv. Under review at New Eng.    
J. Med

mailto:covitz@stanford.edu

